
Pacemaker Remote

Scaling High Availablity Clusters

, Written by the Pacemaker project contributors

Pacemaker Remote: Scaling High Availablity Clusters

by

Abstract

The document exists as both a reference and deployment guide for the Pacemaker Remote service.

The example commands in this document will use:

1. CentOS 7.4 as the host operating system

2. Pacemaker Remote to perform resource management within guest nodes and remote nodes

3. KVM for virtualization

4. libvirt to manage guest nodes

5. Corosync to provide messaging and membership services on cluster nodes

6. Pacemaker 1.1.16 1 to perform resource management on cluster nodes

7. pcs as the cluster configuration toolset

The concepts are the same for other distributions, virtualization platforms, toolsets, and messaging layers, and should
be easily adaptable.

Copyright © 2013-2019 The Pacemaker project contributors.

The text of and illustrations in this document are licensed under version 4.0 or later of the Creative Commons
Attribution-ShareAlike International Public License ("CC-BY-SA")2.

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for
the original version.

In addition to the requirements of this license, the following activities are looked upon favorably:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the
authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors
time to provide updated documents. This notification should describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or else described
in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy
or CD-ROM expression of the author(s) work.

1 While this guide is part of the document set for Pacemaker 2.0, it demonstrates the version available in the standard CentOS repositories
2 An explanation of CC-BY-SA is available at https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Table of Contents
1. Scaling a Pacemaker Cluster ... 1

Overview ... 1
Terms ... 1
Guest Nodes .. 2
Remote Nodes .. 3
Expanding the Cluster Stack ... 3

2. Guest Node Quick Example .. 4
Mile-High View of Configuration Steps .. 4
Using a Guest Node .. 5

3. Configuration Explained ... 7
Resource Meta-Attributes for Guest Nodes .. 7
Connection Resources for Remote Nodes .. 8
Environment Variables for Daemon Start-up ... 8
Removing Remote Nodes and Guest Nodes ... 8

4. Guest Node Walk-through ... 10
Configure the Physical Host .. 10

Configure Firewall on Host ... 10
Install Cluster Software .. 11
Configure Corosync ... 11
Configure Pacemaker for Remote Node Communication .. 11
Verify Cluster Software .. 12
Disable STONITH and Quorum .. 13
Install Virtualization Software ... 13

Configure the KVM guest .. 14
Create Guest .. 14
Configure Firewall on Guest ... 14
Verify Connectivity ... 14
Configure pacemaker_remote .. 14
Verify Host Connection to Guest ... 15

Integrate Guest into Cluster .. 15
Start the Cluster .. 15
Integrate as Guest Node ... 15
Starting Resources on KVM Guest ... 16
Testing Recovery and Fencing ... 17
Accessing Cluster Tools from Guest Node ... 19

5. Remote Node Walk-through .. 20
Configure Remote Node ... 20

Configure Firewall on Remote Node .. 20
Configure pacemaker_remote on Remote Node .. 21

Verify Connection to Remote Node .. 21
Configure Cluster Nodes .. 22

Configure Firewall on Cluster Nodes .. 22
Install Pacemaker on Cluster Nodes ... 22
Copy Authentication Key to Cluster Nodes .. 22
Configure Corosync on Cluster Nodes .. 22
Start Pacemaker on Cluster Nodes ... 23

Integrate Remote Node into Cluster .. 23
Starting Resources on Remote Node ... 24
Fencing Remote Nodes .. 24
Accessing Cluster Tools from a Remote Node ... 24

6. Alternative Configurations .. 26

iii

Pacemaker Remote

Virtual Machines as Cluster Nodes .. 26
Virtual Machines as Remote Nodes .. 26
Containers as Guest Nodes ... 26

A. Revision History ... 28
Index ... 29

iv

List of Figures
1.1. Traditional HA Stack .. 3
1.2. HA Stack With Guest Nodes .. 3

v

List of Tables
3.1. Meta-attributes for configuring VM resources as guest nodes .. 7

vi

Chapter 1. Scaling a Pacemaker
Cluster

Table of Contents
Overview ... 1
Terms ... 1
Guest Nodes .. 2
Remote Nodes .. 3
Expanding the Cluster Stack ... 3

Overview
In a basic Pacemaker high-availability cluster,1 each node runs the full cluster stack of corosync and all
Pacemaker components. This allows great flexibility but limits scalability to around 16 nodes.

To allow for scalability to dozens or even hundreds of nodes, Pacemaker allows nodes not running the
full cluster stack to integrate into the cluster and have the cluster manage their resources as if they were
a cluster node.

Terms
cluster node A node running the full high-availability stack of corosync

and all Pacemaker components. Cluster nodes may run
cluster resources, run all Pacemaker command-line tools
(crm_mon, crm_resource and so on), execute fencing
actions, count toward cluster quorum, and serve as the
cluster’s Designated Controller (DC).

pacemaker_remote A small service daemon that allows a host to be used as
a Pacemaker node without running the full cluster stack.
Nodes running pacemaker_remote may run cluster resources
and most command-line tools, but cannot perform other
functions of full cluster nodes such as fencing execution,
quorum voting or DC eligibility. The pacemaker_remote
daemon is an enhanced version of Pacemaker’s local
resource management daemon (LRMD).

remote node A physical host running pacemaker_remote. Remote nodes
have a special resource that manages communication with
the cluster. This is sometimes referred to as the baremetal
case.

guest node A virtual host running pacemaker_remote. Guest nodes
differ from remote nodes mainly in that the guest node is
itself a resource that the cluster manages.

1 See the Pacemaker documentation [http://www.clusterlabs.org/doc/], especially Clusters From Scratch and Pacemaker Explained, for basic
information about high-availability using Pacemaker

1

http://www.clusterlabs.org/doc/
http://www.clusterlabs.org/doc/

Scaling a Pacemaker Cluster

Note

Remote in this document refers to the node not being a part of the underlying corosync cluster. It
has nothing to do with physical proximity. Remote nodes and guest nodes are subject to the same
latency requirements as cluster nodes, which means they are typically in the same data center.

Note

It is important to distinguish the various roles a virtual machine can serve in Pacemaker clusters:

• A virtual machine can run the full cluster stack, in which case it is a cluster node and is not
itself managed by the cluster.

• A virtual machine can be managed by the cluster as a resource, without the cluster having any
awareness of the services running inside the virtual machine. The virtual machine is opaque
to the cluster.

• A virtual machine can be a cluster resource, and run pacemaker_remote to make it a guest
node, allowing the cluster to manage services inside it. The virtual machine is transparent to
the cluster.

Guest Nodes

"I want a Pacemaker cluster to manage virtual machine resources, but I also want Pacemaker to be
able to manage the resources that live within those virtual machines."

Without pacemaker_remote, the possibilities for implementing the above use case have significant
limitations:

• The cluster stack could be run on the physical hosts only, which loses the ability to monitor resources
within the guests.

• A separate cluster could be on the virtual guests, which quickly hits scalability issues.

• The cluster stack could be run on the guests using the same cluster as the physical hosts, which also hits
scalability issues and complicates fencing.

With pacemaker_remote:

• The physical hosts are cluster nodes (running the full cluster stack).

• The virtual machines are guest nodes (running the pacemaker_remote service). Nearly zero
configuration is required on the virtual machine.

• The cluster stack on the cluster nodes launches the virtual machines and immediately connects to the
pacemaker_remote service on them, allowing the virtual machines to integrate into the cluster.

The key difference here between the guest nodes and the cluster nodes is that the guest nodes do not run
the cluster stack. This means they will never become the DC, initiate fencing actions or participate in
quorum voting.

On the other hand, this also means that they are not bound to the scalability limits associated with the
cluster stack (no 16-node corosync member limits to deal with). That isn’t to say that guest nodes can scale
indefinitely, but it is known that guest nodes scale horizontally much further than cluster nodes.

2

Scaling a Pacemaker Cluster

Other than the quorum limitation, these guest nodes behave just like cluster nodes with respect to resource
management. The cluster is fully capable of managing and monitoring resources on each guest node. You
can build constraints against guest nodes, put them in standby, or do whatever else you’d expect to be able
to do with cluster nodes. They even show up in crm_mon output as nodes.

To solidify the concept, below is an example that is very similar to an actual deployment we test in our
developer environment to verify guest node scalability:

• 16 cluster nodes running the full corosync + pacemaker stack

• 64 Pacemaker-managed virtual machine resources running pacemaker_remote configured as guest
nodes

• 64 Pacemaker-managed webserver and database resources configured to run on the 64 guest nodes

With this deployment, you would have 64 webservers and databases running on 64 virtual machines on 16
hardware nodes, all of which are managed and monitored by the same Pacemaker deployment. It is known
that pacemaker_remote can scale to these lengths and possibly much further depending on the specific
scenario.

Remote Nodes

"I want my traditional high-availability cluster to scale beyond the limits imposed by the corosync
messaging layer."

Ultimately, the primary advantage of remote nodes over cluster nodes is scalability. There are likely some
other use cases related to geographically distributed HA clusters that remote nodes may serve a purpose
in, but those use cases are not well understood at this point.

Like guest nodes, remote nodes will never become the DC, initiate fencing actions or participate in quorum
voting.

That is not to say, however, that fencing of a remote node works any differently than that of a cluster node.
The Pacemaker scheduler understands how to fence remote nodes. As long as a fencing device exists, the
cluster is capable of ensuring remote nodes are fenced in the exact same way as cluster nodes.

Expanding the Cluster Stack
With pacemaker_remote, the traditional view of the high-availability stack can be expanded to include
a new layer:

Figure 1.1. Traditional HA Stack

Figure 1.2. HA Stack With Guest Nodes

3

Chapter 2. Guest Node Quick Example

Table of Contents
Mile-High View of Configuration Steps ... 4
Using a Guest Node .. 5

If you already know how to use Pacemaker, you’ll likely be able to grasp this new concept of guest nodes
by reading through this quick example without having to sort through all the detailed walk-through steps.
Here are the key configuration ingredients that make this possible using libvirt and KVM virtual guests.
These steps strip everything down to the very basics.

Mile-High View of Configuration Steps
• Give each virtual machine that will be used as a guest node a static network address and unique

hostname.

• Put the same authentication key with the path /etc/pacemaker/authkey on every cluster node
and virtual machine. This secures remote communication.

Run this command if you want to make a somewhat random key:

dd if=/dev/urandom of=/etc/pacemaker/authkey bs=4096 count=1

• Install pacemaker_remote on every virtual machine, enabling it to start at boot, and if a local firewall is
used, allow the node to accept connections on TCP port 3121.

yum install pacemaker-remote resource-agents
systemctl enable pacemaker_remote
firewall-cmd --add-port 3121/tcp --permanent

Note

If you just want to see this work, you may want to simply disable the local firewall and put
SELinux in permissive mode while testing. This creates security risks and should not be done
on a production machine exposed to the Internet, but can be appropriate for a protected test
machine.

• Create a Pacemaker resource to launch each virtual machine, using the remote-node meta-attribute to
let Pacemaker know this will be a guest node capable of running resources.

pcs resource create vm-guest1 VirtualDomain hypervisor="qemu:///system" config="vm-guest1.xml" meta remote-node="guest1"

The above command will create CIB XML similar to the following:

 <primitive class="ocf" id="vm-guest1" provider="heartbeat" type="VirtualDomain">
 <instance_attributes id="vm-guest-instance_attributes">
 <nvpair id="vm-guest1-instance_attributes-hypervisor" name="hypervisor" value="qemu:///system"/>
 <nvpair id="vm-guest1-instance_attributes-config" name="config" value="guest1.xml"/>
 </instance_attributes>
 <operations>
 <op id="vm-guest1-interval-30s" interval="30s" name="monitor"/>

4

Guest Node Quick Example

 </operations>
 <meta_attributes id="vm-guest1-meta_attributes">
 <nvpair id="vm-guest1-meta_attributes-remote-node" name="remote-node" value="guest1"/>
 </meta_attributes>
 </primitive>

In the example above, the meta-attribute remote-node="guest1" tells Pacemaker that this resource
is a guest node with the hostname guest1. The cluster will attempt to contact the virtual machine’s
pacemaker_remote service at the hostname guest1 after it launches.

Note

The ID of the resource creating the virtual machine (vm-guest1 in the above example) must be
different from the virtual machine’s uname (guest1 in the above example). Pacemaker will create
an implicit internal resource for the pacemaker_remote connection to the guest, named with the
value of remote-node, so that value cannot be used as the name of any other resource.

Using a Guest Node
Guest nodes will show up in crm_mon output as normal:

Example crm_mon output after guest1 is integrated into cluster.

Stack: corosync
Current DC: node1 (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 13:52:39 2018
Last change: Fri Jan 12 13:25:17 2018 via pacemaker-controld on node1

2 nodes configured
2 resources configured

Online: [node1 guest1]

vm-guest1 (ocf::heartbeat:VirtualDomain): Started node1

Now, you could place a resource, such as a webserver, on guest1:

pcs resource create webserver apache params configfile=/etc/httpd/conf/httpd.conf op monitor interval=30s
pcs constraint location webserver prefers guest1

Now, the crm_mon output would show:

Stack: corosync
Current DC: node1 (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 13:52:39 2018
Last change: Fri Jan 12 13:25:17 2018 via pacemaker-controld on node1

2 nodes configured
2 resources configured

Online: [node1 guest1]

vm-guest1 (ocf::heartbeat:VirtualDomain): Started node1
webserver (ocf::heartbeat::apache): Started guest1

5

Guest Node Quick Example

It is worth noting that after guest1 is integrated into the cluster, nearly all the Pacemaker command-
line tools immediately become available to the guest node. This means things like crm_mon,
crm_resource, and crm_attribute will work natively on the guest node, as long as the connection
between the guest node and a cluster node exists. This is particularly important for any promotable clone
resources executing on the guest node that need access to crm_master to set transient attributes.

6

Chapter 3. Configuration Explained

Table of Contents
Resource Meta-Attributes for Guest Nodes .. 7
Connection Resources for Remote Nodes .. 8
Environment Variables for Daemon Start-up ... 8
Removing Remote Nodes and Guest Nodes ... 8

The walk-through examples use some of these options, but don’t explain exactly what they mean or do. This
section is meant to be the go-to resource for all the options available for configuring pacemaker_remote-
based nodes.

Resource Meta-Attributes for Guest Nodes
When configuring a virtual machine as a guest node, the virtual machine is created using one of the usual
resource agents for that purpose (for example, ocf:heartbeat:VirtualDomain or ocf:heartbeat:Xen), with
additional metadata parameters.

No restrictions are enforced on what agents may be used to create a guest node, but obviously the
agent must create a distinct environment capable of running the pacemaker_remote daemon and cluster
resources. An additional requirement is that fencing the host running the guest node resource must be
sufficient for ensuring the guest node is stopped. This means, for example, that not all hypervisors
supported by VirtualDomain may be used to create guest nodes; if the guest can survive the hypervisor
being fenced, it may not be used as a guest node.

Below are the metadata options available to enable a resource as a guest node and define its connection
parameters.

Table 3.1. Meta-attributes for configuring VM resources as guest nodes

Option Default Description

remote-node none The node name of the guest node this resource defines.
This both enables the resource as a guest node and
defines the unique name used to identify the guest
node. If no other parameters are set, this value will also
be assumed as the hostname to use when connecting
to pacemaker_remote on the VM. This value must not
overlap with any resource or node IDs.

remote-port 3121 The port on the virtual machine that the cluster will use
to connect to pacemaker_remote.

remote-addr value of
remote-
node

The IP address or hostname to use when connecting to
pacemaker_remote on the VM.

remote-connect-
timeout

60s How long before a pending guest connection will time
out.

7

Configuration Explained

Connection Resources for Remote Nodes
A remote node is defined by a connection resource. That connection resource has instance attributes that
define where the remote node is located on the network and how to communicate with it.

Descriptions of these instance attributes can be retrieved using the following pcs command:

pcs resource describe remote
ocf:pacemaker:remote - remote resource agent

Resource options:
 server: Server location to connect to. This can be an ip address or hostname.
 port: tcp port to connect to.
 reconnect_interval: Interval in seconds at which Pacemaker will attempt to
 reconnect to a remote node after an active connection to
 the remote node has been severed. When this value is
 nonzero, Pacemaker will retry the connection
 indefinitely, at the specified interval.

When defining a remote node’s connection resource, it is common and recommended to name the
connection resource the same as the remote node’s hostname. By default, if no server option is provided,
the cluster will attempt to contact the remote node using the resource name as the hostname.

Example defining a remote node with the hostname remote1:

pcs resource create remote1 remote

Example defining a remote node to connect to a specific IP address and port:

pcs resource create remote1 remote server=192.168.122.200 port=8938

Environment Variables for Daemon Start-up
Authentication and encryption of the connection between cluster nodes and nodes running
pacemaker_remote is achieved using with TLS-PSK [https://en.wikipedia.org/wiki/TLS-PSK] encryption/
authentication over TCP (port 3121 by default). This means that both the cluster node and remote node
must share the same private key. By default, this key is placed at /etc/pacemaker/authkey on each
node.

You can change the default port and/or key location for Pacemaker and pacemaker_remote via environment
variables. How these variables are set varies by OS, but usually they are set in the /etc/sysconfig/
pacemaker or /etc/default/pacemaker file.

#==#==# Pacemaker Remote
Use a custom directory for finding the authkey.
PCMK_authkey_location=/etc/pacemaker/authkey
#
Specify a custom port for Pacemaker Remote connections
PCMK_remote_port=3121

Removing Remote Nodes and Guest Nodes
If the resource creating a guest node, or the ocf:pacemaker:remote resource creating a connection to a
remote node, is removed from the configuration, the affected node will continue to show up in output as
an offline node.

8

https://en.wikipedia.org/wiki/TLS-PSK
https://en.wikipedia.org/wiki/TLS-PSK

Configuration Explained

If you want to get rid of that output, run (replacing $NODE_NAME appropriately):

crm_node --force --remove $NODE_NAME

Warning

Be absolutely sure that there are no references to the node’s resource in the configuration before
running the above command.

9

Chapter 4. Guest Node Walk-through

Table of Contents
Configure the Physical Host .. 10

Configure Firewall on Host ... 10
Install Cluster Software .. 11
Configure Corosync ... 11
Configure Pacemaker for Remote Node Communication .. 11
Verify Cluster Software ... 12
Disable STONITH and Quorum .. 13
Install Virtualization Software ... 13

Configure the KVM guest .. 14
Create Guest .. 14
Configure Firewall on Guest ... 14
Verify Connectivity ... 14
Configure pacemaker_remote .. 14
Verify Host Connection to Guest ... 15

Integrate Guest into Cluster .. 15
Start the Cluster .. 15
Integrate as Guest Node ... 15
Starting Resources on KVM Guest ... 16
Testing Recovery and Fencing .. 17
Accessing Cluster Tools from Guest Node .. 19

What this tutorial is: An in-depth walk-through of how to get Pacemaker to manage a KVM guest instance
and integrate that guest into the cluster as a guest node.

What this tutorial is not: A realistic deployment scenario. The steps shown here are meant to get users
familiar with the concept of guest nodes as quickly as possible.

Configure the Physical Host
Note

For this example, we will use a single physical host named example-host. A production cluster
would likely have multiple physical hosts, in which case you would run the commands here on
each one, unless noted otherwise.

Configure Firewall on Host

On the physical host, allow cluster-related services through the local firewall:

firewall-cmd --permanent --add-service=high-availability
success
firewall-cmd --reload
success

10

Guest Node Walk-through

Note

If you are using iptables directly, or some other firewall solution besides firewalld, simply open
the following ports, which can be used by various clustering components: TCP ports 2224, 3121,
and 21064, and UDP port 5405.

If you run into any problems during testing, you might want to disable the firewall and SELinux
entirely until you have everything working. This may create significant security issues and should
not be performed on machines that will be exposed to the outside world, but may be appropriate
during development and testing on a protected host.

To disable security measures:

[root@pcmk-1 ~]# setenforce 0
[root@pcmk-1 ~]# sed -i.bak "s/SELINUX=enforcing/SELINUX=permissive/g" /etc/selinux/config
[root@pcmk-1 ~]# systemctl mask firewalld.service
[root@pcmk-1 ~]# systemctl stop firewalld.service
[root@pcmk-1 ~]# iptables --flush

Install Cluster Software
yum install -y pacemaker corosync pcs resource-agents

Configure Corosync
Corosync handles pacemaker’s cluster membership and messaging. The corosync config file is located in
/etc/corosync/corosync.conf. That config file must be initialized with information about the
cluster nodes before pacemaker can start.

To initialize the corosync config file, execute the following pcs command, replacing the cluster name
and hostname as desired:

pcs cluster setup --force --local --name mycluster example-host

Note

If you have multiple physical hosts, you would execute the setup command on only one host, but
list all of them at the end of the command.

Configure Pacemaker for Remote Node Communication
Create a place to hold an authentication key for use with pacemaker_remote:

mkdir -p --mode=0750 /etc/pacemaker
chgrp haclient /etc/pacemaker

Generate a key:

dd if=/dev/urandom of=/etc/pacemaker/authkey bs=4096 count=1

Note

If you have multiple physical hosts, you would generate the key on only one host, and copy it
to the same location on all hosts.

11

Guest Node Walk-through

Verify Cluster Software
Start the cluster

pcs cluster start

Verify corosync membership

pcs status corosync

Membership information

 Nodeid Votes Name
 1 1 example-host (local)

Verify pacemaker status. At first, the output will look like this:

pcs status
Cluster name: mycluster
WARNING: no stonith devices and stonith-enabled is not false
Stack: corosync
Current DC: NONE
Last updated: Fri Jan 12 15:18:32 2018
Last change: Fri Jan 12 12:42:21 2018 by root via cibadmin on example-host

1 node configured
0 resources configured

Node example-host: UNCLEAN (offline)

No active resources

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

After a short amount of time, you should see your host as a single node in the cluster:

pcs status
Cluster name: mycluster
WARNING: no stonith devices and stonith-enabled is not false
Stack: corosync
Current DC: example-host (version 1.1.16-12.el7_4.5-94ff4df) - partition WITHOUT quorum
Last updated: Fri Jan 12 15:20:05 2018
Last change: Fri Jan 12 12:42:21 2018 by root via cibadmin on example-host

1 node configured
0 resources configured

Online: [example-host]

No active resources

Daemon Status:

12

Guest Node Walk-through

 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

Disable STONITH and Quorum
Now, enable the cluster to work without quorum or stonith. This is required for the sake of getting this
tutorial to work with a single cluster node.

pcs property set stonith-enabled=false
pcs property set no-quorum-policy=ignore

Warning

The use of stonith-enabled=false is completely inappropriate for a production cluster.
It tells the cluster to simply pretend that failed nodes are safely powered off. Some vendors will
refuse to support clusters that have STONITH disabled. We disable STONITH here only to focus
the discussion on pacemaker_remote, and to be able to use a single physical host in the example.

Now, the status output should look similar to this:

pcs status
Cluster name: mycluster
Stack: corosync
Current DC: example-host (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 15:22:49 2018
Last change: Fri Jan 12 15:22:46 2018 by root via cibadmin on example-host

1 node configured
0 resources configured

Online: [example-host]

No active resources

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

Go ahead and stop the cluster for now after verifying everything is in order.

pcs cluster stop --force

Install Virtualization Software
yum install -y kvm libvirt qemu-system qemu-kvm bridge-utils virt-manager
systemctl enable libvirtd.service

Reboot the host.

Note

While KVM is used in this example, any virtualization platform with a Pacemaker resource agent
can be used to create a guest node. The resource agent needs only to support usual commands

13

Guest Node Walk-through

(start, stop, etc.); Pacemaker implements the remote-node meta-attribute, independent of the
agent.

Configure the KVM guest

Create Guest

We will not outline here the installation steps required to create a KVM guest. There are plenty of tutorials
available elsewhere that do that. Just be sure to configure the guest with a hostname and a static IP address
(as an example here, we will use guest1 and 192.168.122.10).

Configure Firewall on Guest

On each guest, allow cluster-related services through the local firewall, following the same procedure as
in the section called “Configure Firewall on Host”.

Verify Connectivity

At this point, you should be able to ping and ssh into guests from hosts, and vice versa.

Configure pacemaker_remote

Install pacemaker_remote, and enable it to run at start-up. Here, we also install the pacemaker package; it
is not required, but it contains the dummy resource agent that we will use later for testing.

yum install -y pacemaker pacemaker-remote resource-agents
systemctl enable pacemaker_remote.service

Copy the authentication key from a host:

mkdir -p --mode=0750 /etc/pacemaker
chgrp haclient /etc/pacemaker
scp root@example-host:/etc/pacemaker/authkey /etc/pacemaker

Start pacemaker_remote, and verify the start was successful:

systemctl start pacemaker_remote
systemctl status pacemaker_remote

 pacemaker_remote.service - Pacemaker Remote Service
 Loaded: loaded (/usr/lib/systemd/system/pacemaker_remote.service; enabled)
 Active: active (running) since Thu 2013-03-14 18:24:04 EDT; 2min 8s ago
 Main PID: 1233 (pacemaker_remot)
 CGroup: name=systemd:/system/pacemaker_remote.service
 ##1233 /usr/sbin/pacemaker-remoted

 Mar 14 18:24:04 guest1 systemd[1]: Starting Pacemaker Remote Service...
 Mar 14 18:24:04 guest1 systemd[1]: Started Pacemaker Remote Service.
 Mar 14 18:24:04 guest1 pacemaker-remoted[1233]: notice: lrmd_init_remote_tls_server: Starting a tls listener on port 3121.

14

Guest Node Walk-through

Verify Host Connection to Guest
Before moving forward, it’s worth verifying that the host can contact the guest on port 3121. Here’s a trick
you can use. Connect using ssh from the host. The connection will get destroyed, but how it is destroyed
tells you whether it worked or not.

First add guest1 to the host machine’s /etc/hosts file if you haven’t already. This is required unless
you have DNS setup in a way where guest1’s address can be discovered.

cat << END >> /etc/hosts
192.168.122.10 guest1
END

If running the ssh command on one of the cluster nodes results in this output before disconnecting, the
connection works:

ssh -p 3121 guest1
ssh_exchange_identification: read: Connection reset by peer

If you see one of these, the connection is not working:

ssh -p 3121 guest1
ssh: connect to host guest1 port 3121: No route to host

ssh -p 3121 guest1
ssh: connect to host guest1 port 3121: Connection refused

Once you can successfully connect to the guest from the host, shutdown the guest. Pacemaker will be
managing the virtual machine from this point forward.

Integrate Guest into Cluster
Now the fun part, integrating the virtual machine you’ve just created into the cluster. It is incredibly simple.

Start the Cluster
On the host, start pacemaker.

pcs cluster start

Wait for the host to become the DC. The output of pcs status should look as it did in the section
called “Disable STONITH and Quorum”.

Integrate as Guest Node
If you didn’t already do this earlier in the verify host to guest connection section, add the KVM guest’s IP
address to the host’s /etc/hosts file so we can connect by hostname. For this example:

cat << END >> /etc/hosts
192.168.122.10 guest1
END

We will use the VirtualDomain resource agent for the management of the virtual machine. This agent
requires the virtual machine’s XML config to be dumped to a file on disk. To do this, pick out the name
of the virtual machine you just created from the output of this list.

15

Guest Node Walk-through

virsh list --all
 Id Name State
--
 - guest1 shut off

In my case I named it guest1. Dump the xml to a file somewhere on the host using the following command.

virsh dumpxml guest1 > /etc/pacemaker/guest1.xml

Now just register the resource with pacemaker and you’re set!

pcs resource create vm-guest1 VirtualDomain hypervisor="qemu:///system" \
 config="/etc/pacemaker/guest1.xml" meta remote-node=guest1

Note

This example puts the guest XML under /etc/pacemaker because the permissions and SELinux
labeling should not need any changes. If you run into trouble with this or any step, try disabling
SELinux with setenforce 0. If it works after that, see SELinux documentation for how to
troubleshoot, if you wish to reenable SELinux.

Note

Pacemaker will automatically monitor pacemaker_remote connections for failure, so it is not
necessary to create a recurring monitor on the VirtualDomain resource.

Once the vm-guest1 resource is started you will see guest1 appear in the pcs status output as a node.
The final pcs status output should look something like this.

pcs status
Cluster name: mycluster
Stack: corosync
Current DC: example-host (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 18:00:45 2018
Last change: Fri Jan 12 17:53:44 2018 by root via crm_resource on example-host

2 nodes configured
2 resources configured

Online: [example-host]
GuestOnline: [guest1@example-host]

Full list of resources:

 vm-guest1 (ocf::heartbeat:VirtualDomain): Started example-host

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

Starting Resources on KVM Guest
The commands below demonstrate how resources can be executed on both the guest node and the cluster
node.

16

Guest Node Walk-through

Create a few Dummy resources. Dummy resources are real resource agents used just for testing purposes.
They actually execute on the host they are assigned to just like an apache server or database would, except
their execution just means a file was created. When the resource is stopped, that the file it created is
removed.

pcs resource create FAKE1 ocf:pacemaker:Dummy
pcs resource create FAKE2 ocf:pacemaker:Dummy
pcs resource create FAKE3 ocf:pacemaker:Dummy
pcs resource create FAKE4 ocf:pacemaker:Dummy
pcs resource create FAKE5 ocf:pacemaker:Dummy

Now check your pcs status output. In the resource section, you should see something like the
following, where some of the resources started on the cluster node, and some started on the guest node.

Full list of resources:

 vm-guest1 (ocf::heartbeat:VirtualDomain): Started example-host
 FAKE1 (ocf::pacemaker:Dummy): Started guest1
 FAKE2 (ocf::pacemaker:Dummy): Started guest1
 FAKE3 (ocf::pacemaker:Dummy): Started example-host
 FAKE4 (ocf::pacemaker:Dummy): Started guest1
 FAKE5 (ocf::pacemaker:Dummy): Started example-host

The guest node, guest1, reacts just like any other node in the cluster. For example, pick out a resource that
is running on your cluster node. For my purposes, I am picking FAKE3 from the output above. We can
force FAKE3 to run on guest1 in the exact same way we would any other node.

pcs constraint location FAKE3 prefers guest1

Now, looking at the bottom of the pcs status output you’ll see FAKE3 is on guest1.

Full list of resources:

 vm-guest1 (ocf::heartbeat:VirtualDomain): Started example-host
 FAKE1 (ocf::pacemaker:Dummy): Started guest1
 FAKE2 (ocf::pacemaker:Dummy): Started guest1
 FAKE3 (ocf::pacemaker:Dummy): Started guest1
 FAKE4 (ocf::pacemaker:Dummy): Started example-host
 FAKE5 (ocf::pacemaker:Dummy): Started example-host

Testing Recovery and Fencing
Pacemaker’s scheduler is smart enough to know fencing guest nodes associated with a virtual machine
means shutting off/rebooting the virtual machine. No special configuration is necessary to make this
happen. If you are interested in testing this functionality out, trying stopping the guest’s pacemaker_remote
daemon. This would be equivalent of abruptly terminating a cluster node’s corosync membership without
properly shutting it down.

ssh into the guest and run this command.

kill -9 $(pidof pacemaker-remoted)

Within a few seconds, your pcs status output will show a monitor failure, and the guest1 node will
not be shown while it is being recovered.

pcs status

17

Guest Node Walk-through

Cluster name: mycluster
Stack: corosync
Current DC: example-host (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 18:08:35 2018
Last change: Fri Jan 12 18:07:00 2018 by root via cibadmin on example-host

2 nodes configured
7 resources configured

Online: [example-host]

Full list of resources:

 vm-guest1 (ocf::heartbeat:VirtualDomain): Started example-host
 FAKE1 (ocf::pacemaker:Dummy): Stopped
 FAKE2 (ocf::pacemaker:Dummy): Stopped
 FAKE3 (ocf::pacemaker:Dummy): Stopped
 FAKE4 (ocf::pacemaker:Dummy): Started example-host
 FAKE5 (ocf::pacemaker:Dummy): Started example-host

Failed Actions:
* guest1_monitor_30000 on example-host 'unknown error' (1): call=8, status=Error, exitreason='none',
 last-rc-change='Fri Jan 12 18:08:29 2018', queued=0ms, exec=0ms

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

Note

A guest node involves two resources: the one you explicitly configured creates the guest, and
Pacemaker creates an implicit resource for the pacemaker_remote connection, which will be
named the same as the value of the remote-node attribute of the explicit resource. When we
killed pacemaker_remote, it is the implicit resource that failed, which is why the failed action
starts with guest1 and not vm-guest1.

Once recovery of the guest is complete, you’ll see it automatically get re-integrated into the cluster. The
final pcs status output should look something like this.

Cluster name: mycluster
Stack: corosync
Current DC: example-host (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 18:18:30 2018
Last change: Fri Jan 12 18:07:00 2018 by root via cibadmin on example-host

2 nodes configured
7 resources configured

Online: [example-host]
GuestOnline: [guest1@example-host]

Full list of resources:

18

Guest Node Walk-through

 vm-guest1 (ocf::heartbeat:VirtualDomain): Started example-host
 FAKE1 (ocf::pacemaker:Dummy): Started guest1
 FAKE2 (ocf::pacemaker:Dummy): Started guest1
 FAKE3 (ocf::pacemaker:Dummy): Started guest1
 FAKE4 (ocf::pacemaker:Dummy): Started example-host
 FAKE5 (ocf::pacemaker:Dummy): Started example-host

Failed Actions:
* guest1_monitor_30000 on example-host 'unknown error' (1): call=8, status=Error, exitreason='none',
 last-rc-change='Fri Jan 12 18:08:29 2018', queued=0ms, exec=0ms

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

Normally, once you’ve investigated and addressed a failed action, you can clear the failure. However
Pacemaker does not yet support cleanup for the implicitly created connection resource while the explicit
resource is active. If you want to clear the failed action from the status output, stop the guest resource
before clearing it. For example:

pcs resource disable vm-guest1 --wait
pcs resource cleanup guest1
pcs resource enable vm-guest1

Accessing Cluster Tools from Guest Node
Besides allowing the cluster to manage resources on a guest node, pacemaker_remote has one other trick.
The pacemaker_remote daemon allows nearly all the pacemaker tools (crm_resource, crm_mon,
crm_attribute, crm_master, etc.) to work on guest nodes natively.

Try it: Run crm_mon on the guest after pacemaker has integrated the guest node into the cluster. These
tools just work. This means resource agents such as promotable resources (which need access to tools like
crm_master) work seamlessly on the guest nodes.

Higher-level command shells such as pcs may have partial support on guest nodes, but it is recommended
to run them from a cluster node.

19

Chapter 5. Remote Node Walk-through

Table of Contents
Configure Remote Node ... 20

Configure Firewall on Remote Node .. 20
Configure pacemaker_remote on Remote Node .. 21

Verify Connection to Remote Node ... 21
Configure Cluster Nodes .. 22

Configure Firewall on Cluster Nodes .. 22
Install Pacemaker on Cluster Nodes ... 22
Copy Authentication Key to Cluster Nodes .. 22
Configure Corosync on Cluster Nodes .. 22
Start Pacemaker on Cluster Nodes ... 23

Integrate Remote Node into Cluster ... 23
Starting Resources on Remote Node ... 24
Fencing Remote Nodes .. 24
Accessing Cluster Tools from a Remote Node ... 24

What this tutorial is: An in-depth walk-through of how to get Pacemaker to integrate a remote node into
the cluster as a node capable of running cluster resources.

What this tutorial is not: A realistic deployment scenario. The steps shown here are meant to get users
familiar with the concept of remote nodes as quickly as possible.

This tutorial requires three machines: two to act as cluster nodes, and a third to act as the remote node.

Configure Remote Node

Configure Firewall on Remote Node
Allow cluster-related services through the local firewall:

firewall-cmd --permanent --add-service=high-availability
success
firewall-cmd --reload
success

Note

If you are using iptables directly, or some other firewall solution besides firewalld, simply open
the following ports, which can be used by various clustering components: TCP ports 2224, 3121,
and 21064, and UDP port 5405.

If you run into any problems during testing, you might want to disable the firewall and SELinux
entirely until you have everything working. This may create significant security issues and should
not be performed on machines that will be exposed to the outside world, but may be appropriate
during development and testing on a protected host.

To disable security measures:

setenforce 0

20

Remote Node Walk-through

sed -i.bak "s/SELINUX=enforcing/SELINUX=permissive/g" /etc/selinux/config
systemctl mask firewalld.service
systemctl stop firewalld.service
iptables --flush

Configure pacemaker_remote on Remote Node
Install the pacemaker_remote daemon on the remote node.

yum install -y pacemaker-remote resource-agents pcs

Create a location for the shared authentication key:

mkdir -p --mode=0750 /etc/pacemaker
chgrp haclient /etc/pacemaker

All nodes (both cluster nodes and remote nodes) must have the same authentication key installed for the
communication to work correctly. If you already have a key on an existing node, copy it to the new remote
node. Otherwise, create a new key, for example:

dd if=/dev/urandom of=/etc/pacemaker/authkey bs=4096 count=1

Now start and enable the pacemaker_remote daemon on the remote node.

systemctl enable pacemaker_remote.service
systemctl start pacemaker_remote.service

Verify the start is successful.

systemctl status pacemaker_remote
pacemaker_remote.service - Pacemaker Remote Service
 Loaded: loaded (/usr/lib/systemd/system/pacemaker_remote.service; enabled)
 Active: active (running) since Fri 2018-01-12 15:21:20 CDT; 20s ago
 Main PID: 21273 (pacemaker_remot)
 CGroup: /system.slice/pacemaker_remote.service
 ##21273 /usr/sbin/pacemaker-remoted

Jan 12 15:21:20 remote1 systemd[1]: Starting Pacemaker Remote Service...
Jan 12 15:21:20 remote1 systemd[1]: Started Pacemaker Remote Service.
Jan 12 15:21:20 remote1 pacemaker-remoted[21273]: notice: crm_add_logfile: Additional logging available in /var/log/pacemaker.log
Jan 12 15:21:20 remote1 pacemaker-remoted[21273]: notice: lrmd_init_remote_tls_server: Starting a tls listener on port 3121.
Jan 12 15:21:20 remote1 pacemaker-remoted[21273]: notice: bind_and_listen: Listening on address ::

Verify Connection to Remote Node
Before moving forward, it’s worth verifying that the cluster nodes can contact the remote node on port
3121. Here’s a trick you can use. Connect using ssh from each of the cluster nodes. The connection will
get destroyed, but how it is destroyed tells you whether it worked or not.

First, add the remote node’s hostname (we’re using remote1 in this tutorial) to the cluster nodes' /etc/
hosts files if you haven’t already. This is required unless you have DNS set up in a way where remote1’s
address can be discovered.

Execute the following on each cluster node, replacing the IP address with the actual IP address of the
remote node.

21

Remote Node Walk-through

cat << END >> /etc/hosts
192.168.122.10 remote1
END

If running the ssh command on one of the cluster nodes results in this output before disconnecting, the
connection works:

ssh -p 3121 remote1
ssh_exchange_identification: read: Connection reset by peer

If you see one of these, the connection is not working:

ssh -p 3121 remote1
ssh: connect to host remote1 port 3121: No route to host

ssh -p 3121 remote1
ssh: connect to host remote1 port 3121: Connection refused

Once you can successfully connect to the remote node from the both cluster nodes, move on to setting up
Pacemaker on the cluster nodes.

Configure Cluster Nodes

Configure Firewall on Cluster Nodes
On each cluster node, allow cluster-related services through the local firewall, following the same
procedure as in the section called “Configure Firewall on Remote Node”.

Install Pacemaker on Cluster Nodes
On the two cluster nodes, install the following packages.

yum install -y pacemaker corosync pcs resource-agents

Copy Authentication Key to Cluster Nodes
Create a location for the shared authentication key, and copy it from any existing node:

mkdir -p --mode=0750 /etc/pacemaker
chgrp haclient /etc/pacemaker
scp remote1:/etc/pacemaker/authkey /etc/pacemaker/authkey

Configure Corosync on Cluster Nodes
Corosync handles Pacemaker’s cluster membership and messaging. The corosync config file is located in
/etc/corosync/corosync.conf. That config file must be initialized with information about the
two cluster nodes before pacemaker can start.

To initialize the corosync config file, execute the following pcs command on both nodes, filling in the
information in <> with your nodes' information.

pcs cluster setup --force --local --name mycluster <node1 ip or hostname> <node2 ip or hostname>

22

Remote Node Walk-through

Start Pacemaker on Cluster Nodes
Start the cluster stack on both cluster nodes using the following command.

pcs cluster start

Verify corosync membership

pcs status corosync
Membership information

 Nodeid Votes Name
 1 1 node1 (local)

Verify Pacemaker status. At first, the pcs cluster status output will look like this.

pcs status
Cluster name: mycluster
Stack: corosync
Current DC: NONE
Last updated: Fri Jan 12 16:14:05 2018
Last change: Fri Jan 12 14:02:14 2018

1 node configured
0 resources configured

After about a minute, you should see your two cluster nodes come online.

pcs status
Cluster name: mycluster
Stack: corosync
Current DC: node1 (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 16:16:32 2018
Last change: Fri Jan 12 14:02:14 2018

2 nodes configured
0 resources configured

Online: [node1 node2]

For the sake of this tutorial, we are going to disable stonith to avoid having to cover fencing device
configuration.

pcs property set stonith-enabled=false

Integrate Remote Node into Cluster
Integrating a remote node into the cluster is achieved through the creation of a remote node connection
resource. The remote node connection resource both establishes the connection to the remote node and
defines that the remote node exists. Note that this resource is actually internal to Pacemaker’s controller.
A metadata file for this resource can be found in the /usr/lib/ocf/resource.d/pacemaker/
remote file that describes what options are available, but there is no actual ocf:pacemaker:remote
resource agent script that performs any work.

23

Remote Node Walk-through

Define the remote node connection resource to our remote node, remote1, using the following command
on any cluster node.

pcs resource create remote1 ocf:pacemaker:remote

That’s it. After a moment you should see the remote node come online.

Cluster name: mycluster
Stack: corosync
Current DC: node1 (version 1.1.16-12.el7_4.5-94ff4df) - partition with quorum
Last updated: Fri Jan 12 17:13:09 2018
Last change: Fri Jan 12 17:02:02 2018

3 nodes configured
1 resources configured

Online: [node1 node2]
RemoteOnline: [remote1]

Full list of resources:

 remote1 (ocf::pacemaker:remote): Started node1

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

Starting Resources on Remote Node
Once the remote node is integrated into the cluster, starting resources on a remote node is the exact same
as on cluster nodes. Refer to the Clusters from Scratch [http://clusterlabs.org/doc/] document for examples
of resource creation.

Warning

Never involve a remote node connection resource in a resource group, colocation constraint, or
order constraint.

Fencing Remote Nodes
Remote nodes are fenced the same way as cluster nodes. No special considerations are required. Configure
fencing resources for use with remote nodes the same as you would with cluster nodes.

Note, however, that remote nodes can never initiate a fencing action. Only cluster nodes are capable of
actually executing a fencing operation against another node.

Accessing Cluster Tools from a Remote Node
Besides allowing the cluster to manage resources on a remote node, pacemaker_remote has one other trick.
The pacemaker_remote daemon allows nearly all the pacemaker tools (crm_resource, crm_mon,
crm_attribute, crm_master, etc.) to work on remote nodes natively.

24

http://clusterlabs.org/doc/
http://clusterlabs.org/doc/

Remote Node Walk-through

Try it: Run crm_mon on the remote node after pacemaker has integrated it into the cluster. These tools
just work. These means resource agents such as promotable resources (which need access to tools like
crm_master) work seamlessly on the remote nodes.

Higher-level command shells such as pcs may have partial support on remote nodes, but it is
recommended to run them from a cluster node.

25

Chapter 6. Alternative Configurations

Table of Contents
Virtual Machines as Cluster Nodes .. 26
Virtual Machines as Remote Nodes .. 26
Containers as Guest Nodes ... 26

These alternative configurations may be appropriate in limited cases, such as a test cluster, but are not
the best method in most situations. They are presented here for completeness and as an example of
Pacemaker’s flexibility to suit your needs.

Virtual Machines as Cluster Nodes
The preferred use of virtual machines in a Pacemaker cluster is as a cluster resource, whether opaque or
as a guest node. However, it is possible to run the full cluster stack on a virtual node instead.

This is commonly used to set up test environments; a single physical host (that does not participate in the
cluster) runs two or more virtual machines, all running the full cluster stack. This can be used to simulate
a larger cluster for testing purposes.

In a production environment, fencing becomes more complicated, especially if the underlying hosts run any
services besides the clustered VMs. If the VMs are not guaranteed a minimum amount of host resources,
CPU and I/O contention can cause timing issues for cluster components.

Another situation where this approach is sometimes used is when the cluster owner leases the VMs from a
provider and does not have direct access to the underlying host. The main concerns in this case are proper
fencing (usually via a custom resource agent that communicates with the provider’s APIs) and maintaining
a static IP address between reboots, as well as resource contention issues.

Virtual Machines as Remote Nodes
Virtual machines may be configured following the process for remote nodes rather than guest nodes (i.e.,
using an ocf:pacemaker:remote resource rather than letting the cluster manage the VM directly).

This is mainly useful in testing, to use a single physical host to simulate a larger cluster involving remote
nodes. Pacemaker’s Cluster Test Suite (CTS) uses this approach to test remote node functionality.

Containers as Guest Nodes
Containers,1 and in particular Linux containers (LXC) and Docker, have become a popular method of
isolating services in a resource-efficient manner.

The preferred means of integrating containers into Pacemaker is as a cluster resource, whether opaque or
using Pacemaker’s bundle resource type.

However, it is possible to run pacemaker_remote inside a container, following the process for guest
nodes. This is not recommended but can be useful, for example, in testing scenarios, to simulate a large
number of guest nodes.

1 https://en.wikipedia.org/wiki/Operating-system-level_virtualization

26

https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Alternative Configurations

The configuration process is very similar to that described for guest nodes using virtual machines. Key
differences:

• The underlying host must install the libvirt driver for the desired container technology — for example,
the libvirt-daemon-lxc package to get the libvirt-lxc [http://libvirt.org/drvlxc.html] driver for
LXC containers.

• Libvirt XML definitions must be generated for the containers. The pacemaker-cts package includes
a script for this purpose, /usr/share/pacemaker/tests/cts/lxc_autogen.sh. Run it
with the --help option for details on how to use it. It is intended for testing purposes only, and
hardcodes various parameters that would need to be set appropriately in real usage. Of course, you can
create XML definitions manually, following the appropriate libvirt driver documentation.

• To share the authentication key, either share the host’s /etc/pacemaker directory with the container,
or copy the key into the container’s filesystem.

• The VirtualDomain resource for a container will need force_stop="true" and an appropriate
hypervisor option, for example hypervisor="lxc:///" for LXC containers.

27

http://libvirt.org/drvlxc.html
http://libvirt.org/drvlxc.html

Appendix A. Revision History
Revision History
Revision 1-0 Tue Mar 19 2013 DavidVossel<davidvossel@gmail.com>
Import from Pages.app
Revision 2-0 Tue May 13 2013 DavidVossel<davidvossel@gmail.com>
Added Future Features Section
Revision 3-0 Fri Oct 18 2013 DavidVossel<davidvossel@gmail.com>
Added Baremetal remote-node feature documentation
Revision 4-0 Tue Aug 25 2015 KenGaillot<kgaillot@redhat.com>
Targeted CentOS 7.1 and Pacemaker 1.1.12+, updated for current terminology and practice
Revision 5-0 Tue Dec 8 2015 KenGaillot<kgaillot@redhat.com>
Updated for Pacemaker 1.1.14
Revision 6-0 Tue May 3 2016 KenGaillot<kgaillot@redhat.com>
Updated for Pacemaker 1.1.15
Revision 7-0 Mon Oct 31 2016 KenGaillot<kgaillot@redhat.com>
Updated for Pacemaker 1.1.16
Revision 7-1 Fri Jan 12 2018 KenGaillot<kgaillot@redhat.com>
Update banner for Pacemaker 2.0 and content for CentOS 7.4 with Pacemaker 1.1.16
Revision 7-2 Mon Jan 29 2019 JanPokorný<jpokorny@redhat.com>
Minor reformatting
Revision 7-3 Tue Oct 15 2019 KenGaillot<kgaillot@redhat.com>
Minor update for dynamic recheck interval

28

Index
C
cluster node, 1, 1
configuration, 7

G
guest node, 1, 1, 2, 2, 4, 4

N
node

cluster node, 1
guest node, 1, 2, 4
remote node, 1, 3

P
pacemaker_remote, 1

R
remote node, 1, 1, 3, 3

29

	Pacemaker Remote
	Table of Contents
	Chapter 1. Scaling a Pacemaker Cluster
	Overview
	Terms
	Guest Nodes
	Remote Nodes
	Expanding the Cluster Stack

	Chapter 2. Guest Node Quick Example
	Mile-High View of Configuration Steps
	Using a Guest Node

	Chapter 3. Configuration Explained
	Resource Meta-Attributes for Guest Nodes
	Connection Resources for Remote Nodes
	Environment Variables for Daemon Start-up
	Removing Remote Nodes and Guest Nodes

	Chapter 4. Guest Node Walk-through
	Configure the Physical Host
	Configure Firewall on Host
	Install Cluster Software
	Configure Corosync
	Configure Pacemaker for Remote Node Communication
	Verify Cluster Software
	Disable STONITH and Quorum
	Install Virtualization Software

	Configure the KVM guest
	Create Guest
	Configure Firewall on Guest
	Verify Connectivity
	Configure pacemaker_remote
	Verify Host Connection to Guest

	Integrate Guest into Cluster
	Start the Cluster
	Integrate as Guest Node
	Starting Resources on KVM Guest
	Testing Recovery and Fencing
	Accessing Cluster Tools from Guest Node

	Chapter 5. Remote Node Walk-through
	Configure Remote Node
	Configure Firewall on Remote Node
	Configure pacemaker_remote on Remote Node

	Verify Connection to Remote Node
	Configure Cluster Nodes
	Configure Firewall on Cluster Nodes
	Install Pacemaker on Cluster Nodes
	Copy Authentication Key to Cluster Nodes
	Configure Corosync on Cluster Nodes
	Start Pacemaker on Cluster Nodes

	Integrate Remote Node into Cluster
	Starting Resources on Remote Node
	Fencing Remote Nodes
	Accessing Cluster Tools from a Remote Node

	Chapter 6. Alternative Configurations
	Virtual Machines as Cluster Nodes
	Virtual Machines as Remote Nodes
	Containers as Guest Nodes

	Appendix A. Revision History
	Index

